动态规划

动态规划问题的一般形式是穷举求最值,比如最长递增子序列,最小距离。

存在「重叠子问题」:如果暴力穷举效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避存在「最优子结构」:才能通过子问题的最值得到原问题的最值。

找到「状态」 -> 定义 dp 数组/函数 -> 明确「选择」-> 明确 base case。

斐波那契数列

暴力递归

int fib(int N) {
    if (N == 1 || N == 2) return 1;
    return fib(N - 1) + fib(N - 2);
}

时间复杂度: O(2^n)

带备忘录的递归解法

int fib(int N) {
    if (N < 1) return 0;
    // 备忘录全初始化为 0
    vector<int> memo(N + 1, 0);
    // 初始化最简情况
    return helper(memo, N);
}

int helper(vector<int>& memo, int n) {
    // base case 
    if (n == 1 || n == 2) return 1;
    // 已经计算过
    if (memo[n] != 0) return memo[n];
    memo[n] = helper(memo, n - 1) + 
                helper(memo, n - 2);
    return memo[n];
}

时间复杂度: O(n)

dp 数组的迭代解法

int fib(int N) {
    vector<int> dp(N + 1, 0);
    // base case
    dp[1] = dp[2] = 1;
    for (int i = 3; i <= N; i++)
        dp[i] = dp[i - 1] + dp[i - 2];
    return dp[N];
}

时间复杂度: O(n)

空间复杂度降为 O(1)

根据斐波那契数列的状态转移方程,当前状态只和之前的两个状态有关,只要存储之前的两个状态就可以了。

int fib(int n) {
    if (n == 2 || n == 1) 
        return 1;
    int prev = 1, curr = 1;
    for (int i = 3; i <= n; i++) {
        int sum = prev + curr;
        prev = curr;
        curr = sum;
    }
    return curr;
}

凑零钱问题

题目

k种面值的硬币,面值分别为c1, c2 ... ck,每种硬币的数量无限,再给一个总金额amount,问最少需要几枚硬币凑出这个金额,如果不可能凑出,算法返回 -1 。

思路

「状态」:目标金额amount

dp函数的定义:函数 dp(n)表示,当前的目标金额是n,至少需要dp(n)个硬币凑出该金额。

「选择」并择优,也就是对于每个状态,可以做出什么选择改变当前状态。具体到这个问题,无论当的目标金额是多少,选择就是从面额列表coins中选择一个硬币,然后目标金额就会减少

base case,目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1

暴力解法

# 伪码框架
def coinChange(coins: List[int], amount: int):
    # 定义:要凑出金额 n,至少要 dp(n) 个硬币
    def dp(n):
        # 做选择,需要硬币最少的那个结果就是答案
        for coin in coins:
            res = min(res, 1 + dp(n - coin))
        return res
    # 我们要求目标金额是 amount
    return dp(amount)

def coinChange(coins: List[int], amount: int):

    def dp(n):
        # base case
        if n == 0: return 0
        if n < 0: return -1
        # 求最小值,所以初始化为正无穷
        res = float('INF')
        for coin in coins:
            subproblem = dp(n - coin)
            # 子问题无解,跳过
            if subproblem == -1: continue
            res = min(res, 1 + subproblem)

        return res if res != float('INF') else -1

    return dp(amount)

时间复杂度:子问题总数 x 解决每个子问题的时间

子问题总数为递归树节点个数,是 O(n^k)。每个子问题中含有一个 for 循环,复杂度为 O(k)。所以总时间复杂度为 O(k * n^k),指数级别。

带备忘录的递归

通过备忘录消除子问题

def coinChange(coins: List[int], amount: int):
    # 备忘录
    memo = dict()
    def dp(n):
        # 查备忘录,避免重复计算
        if n in memo: return memo[n]

        if n == 0: return 0
        if n < 0: return -1
        res = float('INF')
        for coin in coins:
            subproblem = dp(n - coin)
            if subproblem == -1: continue
            res = min(res, 1 + subproblem)

        # 记入备忘录
        memo[n] = res if res != float('INF') else -1
        return memo[n]

    return dp(amount)

子问题总数不会超过金额数 n,即子问题数目为 O(n)。处理一个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)。

dp 数组的迭代解法

dp[i] = x表示,当目标金额为i时,至少需要x枚硬币。

int coinChange(vector<int>& coins, int amount) {
    // 数组大小为 amount + 1,初始值也为 amount + 1
    vector<int> dp(amount + 1, amount + 1);
    // base case
    dp[0] = 0;
    for (int i = 0; i < dp.size(); i++) {
        // 内层 for 在求所有子问题 + 1 的最小值
        for (int coin : coins) {
            // 子问题无解,跳过
            if (i - coin < 0) continue;
            dp[i] = min(dp[i], 1 + dp[i - coin]);
        }
    }
    return (dp[amount] == amount + 1) ? -1 : dp[amount];
}

dp数组初始化为amount + 1,是因为凑成amount金额的硬币数最多只可能等于amount(全用 1 元面值的硬币),所以初始化为amount + 1就相当于初始化为正无穷,便于后续取最小值。