Dp template
动态规划
动态规划问题的一般形式是穷举求最值,比如最长递增子序列,最小距离。
存在「重叠子问题」:如果暴力穷举效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避存在「最优子结构」:才能通过子问题的最值得到原问题的最值。
找到「状态」 -> 定义 dp 数组/函数 -> 明确「选择」-> 明确 base case。
斐波那契数列
暴力递归
int fib(int N) {
if (N == 1 || N == 2) return 1;
return fib(N - 1) + fib(N - 2);
}
时间复杂度: O(2^n)
带备忘录的递归解法
int fib(int N) {
if (N < 1) return 0;
// 备忘录全初始化为 0
vector<int> memo(N + 1, 0);
// 初始化最简情况
return helper(memo, N);
}
int helper(vector<int>& memo, int n) {
// base case
if (n == 1 || n == 2) return 1;
// 已经计算过
if (memo[n] != 0) return memo[n];
memo[n] = helper(memo, n - 1) +
helper(memo, n - 2);
return memo[n];
}
时间复杂度: O(n)
dp 数组的迭代解法
int fib(int N) {
vector<int> dp(N + 1, 0);
// base case
dp[1] = dp[2] = 1;
for (int i = 3; i <= N; i++)
dp[i] = dp[i - 1] + dp[i - 2];
return dp[N];
}
时间复杂度: O(n)
空间复杂度降为 O(1)
根据斐波那契数列的状态转移方程,当前状态只和之前的两个状态有关,只要存储之前的两个状态就可以了。
int fib(int n) {
if (n == 2 || n == 1)
return 1;
int prev = 1, curr = 1;
for (int i = 3; i <= n; i++) {
int sum = prev + curr;
prev = curr;
curr = sum;
}
return curr;
}
凑零钱问题
题目
k
种面值的硬币,面值分别为c1, c2 ... ck
,每种硬币的数量无限,再给一个总金额amount
,问最少需要几枚硬币凑出这个金额,如果不可能凑出,算法返回 -1 。
思路
「状态」:目标金额amount
。
dp
函数的定义:函数 dp(n)表示,当前的目标金额是n
,至少需要dp(n)
个硬币凑出该金额。
「选择」并择优,也就是对于每个状态,可以做出什么选择改变当前状态。具体到这个问题,无论当的目标金额是多少,选择就是从面额列表coins
中选择一个硬币,然后目标金额就会减少
base case,目标金额为 0 时,所需硬币数量为 0;当目标金额小于 0 时,无解,返回 -1
暴力解法
# 伪码框架
def coinChange(coins: List[int], amount: int):
# 定义:要凑出金额 n,至少要 dp(n) 个硬币
def dp(n):
# 做选择,需要硬币最少的那个结果就是答案
for coin in coins:
res = min(res, 1 + dp(n - coin))
return res
# 我们要求目标金额是 amount
return dp(amount)
def coinChange(coins: List[int], amount: int):
def dp(n):
# base case
if n == 0: return 0
if n < 0: return -1
# 求最小值,所以初始化为正无穷
res = float('INF')
for coin in coins:
subproblem = dp(n - coin)
# 子问题无解,跳过
if subproblem == -1: continue
res = min(res, 1 + subproblem)
return res if res != float('INF') else -1
return dp(amount)
时间复杂度:子问题总数 x 解决每个子问题的时间。
子问题总数为递归树节点个数,是 O(n^k)。每个子问题中含有一个 for 循环,复杂度为 O(k)。所以总时间复杂度为 O(k * n^k),指数级别。
带备忘录的递归
通过备忘录消除子问题
def coinChange(coins: List[int], amount: int):
# 备忘录
memo = dict()
def dp(n):
# 查备忘录,避免重复计算
if n in memo: return memo[n]
if n == 0: return 0
if n < 0: return -1
res = float('INF')
for coin in coins:
subproblem = dp(n - coin)
if subproblem == -1: continue
res = min(res, 1 + subproblem)
# 记入备忘录
memo[n] = res if res != float('INF') else -1
return memo[n]
return dp(amount)
子问题总数不会超过金额数 n,即子问题数目为 O(n)。处理一个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)。
dp 数组的迭代解法
dp[i] = x
表示,当目标金额为i
时,至少需要x
枚硬币。
int coinChange(vector<int>& coins, int amount) {
// 数组大小为 amount + 1,初始值也为 amount + 1
vector<int> dp(amount + 1, amount + 1);
// base case
dp[0] = 0;
for (int i = 0; i < dp.size(); i++) {
// 内层 for 在求所有子问题 + 1 的最小值
for (int coin : coins) {
// 子问题无解,跳过
if (i - coin < 0) continue;
dp[i] = min(dp[i], 1 + dp[i - coin]);
}
}
return (dp[amount] == amount + 1) ? -1 : dp[amount];
}
dp
数组初始化为amount + 1
,是因为凑成amount
金额的硬币数最多只可能等于amount
(全用 1 元面值的硬币),所以初始化为amount + 1
就相当于初始化为正无穷,便于后续取最小值。